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Universality of correlation functions obtained in parametric random matrix theory is explored in a multipa-
rameter formalism, through the introduction of a diffusion matrixDi j (R), and compared to results from a
multiparameter chaotic model. We show that certain universal correlation functions in one dimension are no
longer well defined by the metric distance between the points in parameter space, due to a global topological
dependence on the path taken. By computing the density of diabolical points, which is found to increase
quadratically with the dimension of the space, we find a universal measure of the density of diabolical points
in chaotic systems.@S1063-651X~96!11012-6#
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I. INTRODUCTION

The relation between classically chaotic systems and the
fluctuation properties of the corresponding quantum systems
has been a focus of intense investigation in recent years@1#.
We have learned that the quantum counterpart of classically
chaotic systems have many properties which can be de-
scribed by random matrix theory~RMT!. As a consequence,
one now typically invokes random matrix ensemble averag-
ing to simplify the computation of properties of complex
systems. But while the understanding of properties of RMT
is now quite well established, until recently very little was
known about random matrix or chaotic Hamiltonians which
depend on an external parameterx. The parameter depen-
dence can be the strength of an external field, or even the
motion of slow variables in a complex system treated in the
Born-Oppenheimer approximation@2#. The types of ques-
tions one is interested in are how the properties of such sys-
tems are correlated in that parameter. In the past few years it
has become apparent that a more general class of random
matrix results exist for parametric Hamiltonians. In a series
of papers, Szafer-Simons and Altshuler@3# computed the
density-density and level velocity correlators in a parametric
random matrix model, and demonstrated that it described the
behavior of very different chaotic and disordered systems.
By introducing a specific scaling of the parameterx, corre-
lation functions were found to fall upon universal curves,
independent of the underlying properties of the studied sys-
tems. Since then, there have been extensive studies on uni-
versality in other systems, and the class of observables has
been extended to include wave functions and distributions of
matrix elements@4#. Several further studies were based on
Ref. @4#, including a check that the predictions for wave
functions hold in chaotic systems@5#, a general theory for
scaling @6#, and the introduction and verification of a wide
class of universal correlation functions and distributions@7#.
In the study of many-body systems, both bosonic@7# and
fermionic @8# systems have been shown to have identical
correlation functions when the systems are sufficiently cha-
otic. However, all this work has been relegated to one-

parameter models. The purpose of this paper is to extend the
previous results to two or more parameters, and to examine
the global topological effects on universal functions due to
the multidimensional parameter space. We point out that the
universality of parametric correlations which emerges on
short distance scales can be different from one-parameter
model predictions.

II. GEOMETRIC PHASE FOR GOE MATRICES

We consider multiparameter Hamiltonians which exhibit
chaos in some region of parameter space, such that the fluc-
tuation properties of the quantum Hamiltonian in that regime
are described by random matrix theory. We will limit the
discussion to the Gaussian orthogonal ensemble~GOE!, or
systems with time-reversal symmetry. As a result, the Hamil-
tonian is a real symmetric matrix, with a nondegenerate ei-
genvalue spectrum. Consider now the general adiabatic
variation of the HamiltonianH„R(t)…, where the adiabatic
eigenstates are defined as

H„R~ t !…cn„R~ t !…5E„R~ t !…cn„R~ t !…. ~1!

For a wave-function adiabatically transported along some
pathR, the wave-function acquires both a dynamical and a
geometric phase,g @9#:

C~ t !5e2~ i /\!*0
t dt88En„R~ t8!…eign~ t !cn„R~ t !…. ~2!

We are only concerned here with the geometric component
of the acquired phase,gn , which contains information about
the topology of the parameter space and about the presence
of diabolical points. What we mean by diabolical points are
the following. If one takes the matrix elements of a general
N3N matrix as parameters~which can be complex!, then the
points in this parameter space which correspond to degenera-
cies in the eigenvalue spectrum are the so-called diabolical
points. For a specific parametrizationH(R), the pathR need
not pass through the diabolical points ofH to be influenced
by their presence. For the parallel transport of the adiabatic
statescn around a closed circuitC in parameter space, we
have

^cn, f inalucn,init ial &5eign~C!. ~3!*Electronic address: dimitri@nst.physics.yale.edu
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For real symmetric matrices, the acquired geometric phase
for a closed loop iseig(C)51 if the path does not enclose a
degeneracy~diabolical point!, and eig(C)521 if the path
does enclose a degeneracy@10#. The path can be in any re-
gion of parameter space, but if the chaotic properties of the
Hamiltonian go away for a particular range of parameter, one
might encounter degeneracies and further complications such
as non-Abelian gauge potentials can develop. We will not
consider this here, and hence restrict our discussion to paths
in the classically chaotic regions of the model we study, and
equivalently, Hamiltonians chosen from the GOE ensemble.

III. TWO-PARAMETER MODELS

We will study a two-parameter Hamiltonian which is a
many-body bosonic model for collective nuclear excitations
@7#. We would like to compute various parameter-dependent
correlation functions in the model and understand how close
they are to being purely statistical in shape. For example, this
might include how rapidly a many-body wave function deco-
rrelates as one modifies the Hamiltonian. To do this we re-
quire a parameter-dependent, statistical Hamiltonian from
which we can compute the statistical predictions for various
correlation functions.

A. Random matrix Hamiltonians

Random matrix theory describes the properties of a
HamiltonianHi j whose matrix elements are Gaussian ran-
dom numbers@11#. The first step is to extend these ideas to
incorporate parameter dependence, resulting in a Hamil-
tonianHi j (R) which is a random matrix at every parameter
valueR. We first consider a two-parameter realization of the
GOE ensemble. A convenient Hamiltonian is@12#

H~R!5H~x,y!

5
1

A2
@H1cosx1H2sinx1H3cosy1H4siny#, ~4!

whereHa are independent,N3N, GOE matrices:

Ha
i j50,

Ha
i j Hb

kl5
a2

2
dab~d ikd j l1d i ld jk!. ~5!

The parametera is related to the average level spacingD via
a5DAN/p. H(x,y) is clearly GOE at every point (x,y),
since the linear combination of independent GOE matrices
results in another GOE matrix@11#. Consequently, it has
only two relevant moments:

Hi j ~x,y!50,

Hi j ~x,y!Hkl~x8,y8!5
a2

2
F~x2x8,y2y8!~d ikd j l1d i ld jk!,

~6!

with

F~x,y!5
1

2
@cos~x!1cos~y!#>12

1

4
~x21y2!1•••,

F~0!51. ~7!

All higher order moments can be computed in terms ofF @7#.
We can also restrict Eq.~4! to be a one-parameter model, for
example, keepingy fixed. In this case, the statistics of
H(x)[H(x,y5const! reduce to the familiar properties of
one-parameter systems@4–6#, namely,

Hi j ~x!Hkl~x8!5
a2

2
F~x2x8!~d ikd j l1d i ld jk!, ~8!

where the correlation function is now,

F~x!5
1

2
@11cos~x!#5cos2S x2D>12

1

4
x21•••. ~9!

We note that the small distance behavior of the functionsF
is quadratic is both Eqs.~7! and ~9!.

B. A chaotic Hamiltonian

We will verify the topological effects we present here in a
realistic model. We use the interacting boson model~IBM !
@13#, which is built from scalar (s†) and quadrupole
(dm

† ,m562,61,0) bosons, which carry angular momentum
L50 and 2, respectively. This model describes the low-
energy collective excitations of nuclei with even numbers of
protons and neutrons, the bosons representing paired nucle-
ons. In the consistent-Q form @14#, the Hamiltonian has only
two relevant parametersh and x, and in spherical tensor
notation, is given by

H IBM~h,x!5hn̂d1
12h

Nb
Q̂x

•Q̂x1c3L̂•L̂ , ~10!

whered̃m5(21)md2m and

n̂d5d†•d̃5 (
m522

2

~2 !mdm
† d̃2m ,

L̂m5A10@d†3d̃#m
~1!5A10(

n,n8
^2n2n8u1m&dn

†d̃n8,

~11!

Q̂m
x 5dm

†s1s†d̃m1x@d†3d̃#m
~2! ,

5dm
†s1s†d̃m1x(

n,n8
^2n2n8u2m&dn

†d̃n8.

Herend is thed-boson number operator,L̂m is the angular
momentum vector,Nb is the boson number defined as half
the number of valence nucleons,Q̂m

x is the quadrupole op-
erator, and the bracketed symbol (^•••&) is a Clebsch-
Gordan coefficient. Because the Hamiltonian is a scalar, an-
gular momentum is a good quantum number, so that the
parameterc3 adds only an overall constant toH IBM , and is
unimportant. The typical physical range of the parameters is
2A7/2<x<0 and 0<h<1. The chaotic parameter range of
this model has been mapped out in detail@15#, and we con-
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sider the quantum properties for this classically chaotic re-
gime. The Hamiltonian is diagonalized in the vibrational@or
U~5!# basis, withNb525. The universality of one-parameter
random matrix theory predictions for wave functions and
distributions has been established for this model and is ex-
tensively discussed in Ref.@7#.

C. Topological considerations

The topological properties of the parameter space can be
readily taken into account using a symplectic 2-forms i j and
a metric tensorgi j . The general Riemannian structure of the
manifold of quantum states have been defined in Ref.@16#.
In the adiabatic basisucn(R)& of H(R), these are determined
by the real and imaginary parts of the quantum geometric
tensor@9,16#:

Ti j5^¹ icnu~12ucn&^cnu!u¹ jcn&5gi j1
i

2
s i j . ~12!

The antisymmetric tensors i j is related to the element of area
of parametric loops we study below, and the metricgi j , the
measure of distance:

ds5s i j dRi`dRj , ds25gi j dRidRj . ~13!

It is hence possible to incorporate the topological properties
of the parameter space into a very general formalism. How-
ever, as the random matrix model we consider here, in the
universal regime, is rather simple, we forgo a covariant con-
struction in this article.

D. Universal scaling for multiparameter theories

The universal functions obtained for various parametric
correlation functions, such as the decorrelation of eigenfunc-
tions ^c(R)uc(0)&, are found by rescaling the parameters
R to remove all model dependence. The scaling of the pa-
rameters is the crucial element in obtaining universality in
one-parameter theories. We need to extend this to multipa-
rameter models. Consider the short distance diffusion of the
adiabatic energies of a HamiltonianH(R). From perturba-
tion theory, following the arguments of Dyson@4,17,6# we
have to first order:

En~R8!5En~R!1Hnn~R8!2Hnn~R!1•••. ~14!

It is convenient to rescale the energies by the mean level
spacingEn→En /D, so that the statistical decorrelation of the
eigenvalues is given by:

~dEn!
25@En~R8!2En~R!#2

>
1

D2~Hnn~R8!2Hnn@~R!#2 ~15!

5
2a2

D2 @12F~R8,R!#

>~Ri82Ri !~Rj82Rj !H 2Np2

]2F

]Ri8]Rj8
U
R85R

J
5„R82R…–D„R…–„R82R…. ~16!

Equation~16! demonstrates that on short distance scales, the
evolution of the adiabatic energies of the Hamiltonian re-
semble a diffusion process, characterized by thediffusion
matrix Di j (R). From the above definition,Di j (R) can be
related to the autocorrelation of the Hamiltonian or the local
curvature properties of the energy surfacesE(R):

Di j ~R!5¹ iEn~R!•¹ jEn~R!5
2N

p2

]2F~R8,R!

]Ri8]Rj8
U
R85R

.

~17!

To obtain universality in correlation functions that depend on
the parameters, we must rescale the parametersR. In analogy
to the 1-dimensional situation, we define:

R̃[D1/2
•R. ~18!

Here D1/2 is the square root of the diffusion matrixD
(D5†D1/2

‡

TD1/2), a model-dependent quantity. Because
(dEn)

2 is positive definite, it follows that the diffusion ma-
trix Di j (R) must be a positive definite matrix. As a conse-
quence, its square root,D1/2, is always well defined. Specifi-
cally, it is an upper triangular matrix, which can be
constructed using the Cholesky factorization@18#. In terms

of R̃, the energy level diffusion is now parameter free:

~dEn!
25R̃2. ~19!

In analogy to the 1-dimensional scaling, we now expect all
model dependence to be removed when we compute corre-

lation functions in terms ofR̃. These are in particular the
dimension of the Hilbert spaceN, the average level density
D, and the short distance behavior of the autocorrelation
function F(x)512cx21••• characterized by the coeffi-
cient~s! c. The rescaling byD1/2 removes all this depen-
dence, resulting in parameter free,universalresults. We only
remark here in passing that there is a more general class of
processes for which the diffusion is not smooth@6#, charac-
terized by the short distance behavior ofF(x):
F(x)512cxa1•••, with 0<a,2. In this case, one can
proceed as discussed above, but one must define the deriva-
tives ofF in Eq. ~17! as fractional derivatives@19,6#.

In general, there is dependence of the diffusion matrix on
its position in parameter space, clearly seen in Eq.~17!. A
general parametric HamiltonianH(R) will have an autocor-
relationF(R8,R) which is not translationally invariant, as is
the case for the IBM Hamiltonian, so thatD is parameter
dependent. By construction, our random matrix Hamiltonian
is translationally invariant, so thatF(R8,R)5F(R82R), and
as a resultDi j is independent ofR. We find for the random
matrix model@Eq. ~4!#:

Di j ~R!5Di j5Dd i j5
N

p2 d i j . ~20!

In one-parameter models,Di j→Dxx5C(0), thescaling in-
troduced in Refs.@3#. Note that the diffusion matrix for our
random matrix model is isotropic~in parameter space!,
which is certainly not the case for the IBM Hamiltonian,
which contains bilinear parameter dependence of the form
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hx. In that case we compute the components ofDi j (h,x)
for the energy surfacesEn(h,x) and rescale accordingly.

Consider now the path taken from0→ R̃. A particular
wave-function following different paths between these two
points will generally develop distinct geometric phases

gn( R̃). Equivalently, we can consider closed circuits which

begin and end at a given point, denotedR̃50. Using the
two-parameter model in Eq.~4!, whereR5(x,y), we define
such a pathC as:

~0,0!→~X0,0!→~X0 ,Y0!→~0,Y0!→~0,0!. ~21!

Upon traversing this path, the wave-function will develop a
phase according to

ucn&→eign~C!ucn&56ucn&. ~22!

From Eq.~20!, the scaling along the circuitC in the x and
y directions is

Rĩ5AN

p2d i j Rj , x̃5AN

p2x, ỹ5AN

p2y. ~23!

The relevant quantity is the area of the loop,
A5DxDy5X0Y0. This measure of area can be made univer-
sal ~for comparisons to parametric areas in other Hamilto-
nians! by defining the scaled area:

Ã5D x̃D ỹ5ADxxDyyX0Y0 . ~24!

As a check of our results, we plot in Fig. 1 the ratio of the
computed value ofÃ to the predicted result in Eqs.~23!,~24!,
using the Hamiltonian of Eq.~4!, for varying sizes of the
parametric loop. We take 100 points around the loopC, and
computeDi j (x,y) by averaging over the middle third of the
energy surfacesEn(x,y). The agreement is quite good.
~There is a slight systematic shift of the results which seems
to be due to the method used to unfold the energy spectrum.!

The regime of universality is roughly defined by the scale
@4#

uR̃u&1. ~25!

Analogously, the regime of universal behavior for topologi-
cal phase effects is

Ã&1. ~26!

We will see in the next section that the area of the loop does
not have to be large before one finds significant effects, and
saturation of these effects already occur within the universal
regime.

Our previous work in Refs.@7,4# examined the universal
statistical decorrelations of wave functions, as well as related
observables, in a one-parameter formalism. There we intro-
duced the distribution of wave function overlaps between the
eigenstates of two Hamiltonians separated by a parametric

distanceR̃:

P~u;R̃!, u5^cn~R̃!ucn~0!&. ~27!

In Fig. 2, a typical universal result is shown.@The vertical

axis in all plots ofP(u;R̃) is rescaled to place the maximum
near unity.# The solid histogram is the result from random
matrix theory, and the dashed histogram is the result from
the IBM, in particularJp5101 states@7#. In a basis of 25
bosons,Nb525, this corresponds to a dimension of 211
states, of which only the middle third of the eigenstates are

used. WhenR̃50, we are measuring the distribution of
wave-function overlaps of a single Hamiltonian. The result is
a delta function, since the wave functions are orthonormal;

all overlaps are unity@u5^cn(0)ucn(0)&51# for R̃50. As

R̃ increases, we measure the distribution of overlaps of wave

functions ofH(R̃1) andH(R̃2), whereR̃5R̃22R̃1, which

spreads from the delta function atR̃50 in a model-

FIG. 1. Comparison of computed scaled area,
Ã5ADxxDyyX0Y0, of the parametric loopC, for the Hamiltonian
of Eq. ~4!, to the theoretical result from Eqs.~23! and ~24!. The
dashed line is the expected result.

FIG. 2. One-parameter universality of the distribution of matrix

elementsP(u;R̃), whereu5^cn(R̃)ucn(0)&. The solid histogram
is random matrix prediction while the dotted histogram is the ob-
served result from the interacting boson model@7#.
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independent way. Eventually, whenR̃@1, the two Hamilto-
nians have eigenfunctions which are completely uncorre-
lated, so that one recovers the statistical distribution for the
overlap of GOE eigenvectors, the Porter-Thomas distribution
@20,11#. The Porter-Thomas limit is nonuniversal in the
sense that the distribution depends explicitly on the dimen-
sionN of the space. However, if we now allow paths in two
or more dimensions, the shape of this distribution depends

on howone reaches the positionR̃.
Consider the same distributions when we traverse the path

of Eq. ~21! of area Ã. When we transportN eigenstates
around the loop, a certain number of them will develop a
phasegn(C)5p, which we denoteN(p). The remaining
N(0) states do not acquire a phase, where
N5N(0)1N(p). The fraction of states which acquire a
Berry’s phase is defined as

f5
N~p!

N~0!1N~p!
. ~28!

As mentioned above, because a nonzero value forN(p) in-
dicates that paths followed by certain eigenstates enclose a
diabolical point, this measure is clearly related to the number
of diabolical points enclosed by the path of areaA. In Fig. 3,

the wave-function overlap distribution function,P(u;R̃), is
shown at various points along the square circuitC. The solid
histogram corresponds to the random matrix predictions, and
the dots to the results from the IBM. Initially, the distribution

is a delta function centered atR̃5(x,y)5(0,0). As the sepa-

ration R̃ increases, the decorrelation is similar to the results

of Fig. 2. But as the circuit returns to the origin,R̃50, the
distribution bifurcates into two distinct distributions, corre-

sponding to the existence of the Berry’s phase of
exp@ign(C)#561. As the circuit is closed, the distribution
does not go back to its original form, but is now described by
two delta functions located atu561 of equal magnitudes
~within numerical fluctuations!. The fractionf is at its statis-
tical ~saturation! limit of 50% for this loop, as seen in Fig.
3~f!. Hence,the short distance universality that occurs in
multiparameter systems is not simply a function of the metric

distance between the two points0 and R̃. Given only the

distanceR̃, the distributionP(u;R̃) is not well defined, since
one might be close to either Fig. 3~a! or 3~f!, which represent
the same point. However, both are universal results when
one follows a path of the same scaled area. In this case, the
universal functionP(u) must also identify the area sub-
tended by the path. Figure 4 shows a similar collection of
distributions in the case of a smaller parametric square. As
can be seen here, only a small fraction of states subtend a
diabolical point. It is clear that quantities which are sensitive
to the phase of the wave functions will generally be modified
in multiparameter theories.

IV. UNIVERSAL DENSITY OF DIABOLICAL POINTS

The effect we have described in the previous section is
due to diabolical points which are enclosed by the parametric
circuit C. We now consider the density of these diabolical
points. It has been shown that a necessary condition for the
occurrence of a Berry’s phase ofg(C)5p for a system
transported around a closed loopC is the existence of a
diabolical point within the loop@10,12#. Hence the fraction
f of states in Fig. 3~f! and 4~d! that haveg(C)5p should be
a measure of the number of diabolical points enclosed in the
areaA, or equivalently, the density of diabolical points. We
note that we assume that as the area increases, the occurrence
of a new diabolical point is responsible for the phase change
of only one eigenfunction. For loops of small area, which is

FIG. 3. Modification of one-parameter universality for a two-
parameter square of sideX05Y050.32, withN5200. The distribu-

tion P(u;R̃) is shown at the points (X,Y)5~a! (0,0), ~b! (0.16,0),
~c! (0.32,0.32),~d! (0,0.32),~e! (0,0.16),~f! (0,0) ~after traversal
of loop!. Both ~f! and ~a! represent the same point, showing that
universality is path dependent. The dotted histogram corresponds to
results from the IBM, on a parametric loop of similar scaled area.

FIG. 4. Same as Fig. 3, but for a loop of smaller area. In this
case, X05Y050.03, and N5200. The figures correspond to
(X,Y)5~in units of X0) ~a! (0,0), ~b! (1.0,1.0),~c! (0.8,1.0),~d!
(0,0) ~after traversal of loop!. The smaller loop area contains fewer
diabolical points and hence has fewer states which split in~d!. The
dashed histogram corresponds to the results from the IBM, which
are plotted slightly offset for better contrast.
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the situation in the universal regime, this is a reasonable
assumption. In Fig. 5~top! we plot the fraction of statesf
which enclose a diabolical point as a function of the scaled
area. There are three sets of results in the figure. The crosses
are the result of varying the size of the loop,X05Y0
P(0,0.25#, with N5200, so that the scaled area varies from
0 to 1.27. The boxes correspond to varying the dimension of
the matrices from N5502300, for fixed area with
X05Y050.18. Finally, the open circles correspond to para-
metric loops in the interacting boson model, at fixed dimen-
sion. As is clearly seen the behavior is statistically equivalent
for all the results, demonstrating universality of the results.
The general features of these results are the following. We
see that the fractionf increases linearly with scaled area, and
that statistical saturation of 50% occurs forÃ;1. @In the
Hamiltonian~4!, the relation to the area isÃ5NA/p2 ~see
Fig. 1! while in the IBM, Ã}NA.# We expect saturation
when there are many diabolical points, so that statistically
the probability of having a phase change for an arbitrary
wave-function is 1/2. If we define the number of diabolical
points enclosed by the circuitC asn(C)5Nf(C), we con-
clude that in the nonsaturation regime,

f ~C!5cNA, n~C!5cN2A, ~29!

wherec is determined from the slope of Fig. 5~bottom!. In
the saturation regime,

f ~C!5
1

2
, n~C!5

N

2
. ~30!

When the area is large,f is no longer a good measure of the
number of diabolical points, so the dependence ofn(C) and
f (C) with N is no longer meaningful. In Fig. 5~bottom!, we
plot the small area behavior of the fractionf . The statistical
errors are computed by computing the fractionf and the
scaled areaÃ for a number of realizations of the parametric
Hamiltonians. The results for the chaotic system~IBM !, the
open circles, are not averaged over, but come from single
parametric loops. The general result is that the number of
diabolical points grows quadratically with the dimension of
the matrix.~Saturation effects occur for larger areas.! From
the results of Fig. 5, we conclude that the fractional density
of diabolical points,r, in terms of scaled area, is a universal
constant for chaotic systems, given by

r[
f ~C!

Ã
50.9460.10. ~31!

The quantity similar ton(C) was examined recently in a
very interesting study of avoided level crossings@12#, using
the same two-parameter GOE model. In that study, a similar
scaling inN was found for the number of diabolical points,
although their results were not universal, and do not com-
pletely agree with the results of this study. The overall scal-
ing agreement is encouraging, and we believe the discrep-
ancy is due to the different methods used to count diabolical
points.

V. CONCLUSION

We have developed a formalism to compute universal
parametric correlations in multiparameter systems, explicitly
demonstrating universality in chaotic systems. The scaling in
achieved through the square root of the diffusion matrix
Di j . We have also found that universal results for two-point
correlation functions and distributions, which are thought to
be only a function of the separation of the points in param-
eter space, can be path dependent in more than one param-
eter dimension. Indeed, one can obtain distinct results for the
universal correlations by reaching the same final point by
different paths. So short distance correlations are not a
simple function of the metric distance between the points in
parameter space, but are also a function of the shape of the
path taken between the points. This is true for all quantities
which are sensitive to the phase of the wave functions.
Whether one can actually measure interference effects in a
manner analogous to measures of Berry’s phase is an inter-
esting question to explore. Quantities which are not sensitive
to the phase will not suffer from this ambiguity. Finally, we
have verified that the density of diabolical points grows qua-
dratically with the dimension of the matrix, and used that to
determine a universal measure of the density of diabolical
points in chaotic systems.
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FIG. 5. Universality of the density of diabolical pointsf in
chaotic systems.~Top! fraction of wave functions enclosing a dia-
bolical point as a function of the scaled area of the loopC, calcu-
lated at~i! fixed dimensionN5200, with the size of the loop vary-
ing over the range 0<X05Y0<0.25 ~crosses!; ~ii ! fixed loop area
with X05Y050.18, and the dimension varied fromN5252300
~boxes!; ~iii ! fixed dimension in the chaotic region of the IBM pa-
rameter space, for several loop sizes~circles!. ~Bottom! linear be-
havior of the small area behavior off . From this we find the density
of diabolical points increases quadratically with the dimension of
the matrix.
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