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Topological dependence of universal correlations in multiparameter Hamiltonians
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Universality of correlation functions obtained in parametric random matrix theory is explored in a multipa-
rameter formalism, through the introduction of a diffusion ma@i¥(R), and compared to results from a
multiparameter chaotic model. We show that certain universal correlation functions in one dimension are no
longer well defined by the metric distance between the points in parameter space, due to a global topological
dependence on the path taken. By computing the density of diabolical points, which is found to increase
guadratically with the dimension of the space, we find a universal measure of the density of diabolical points
in chaotic system4.51063-651X96)11012-6

PACS numbe(s): 05.40+j, 05.45+h, 24.60-—k

[. INTRODUCTION parameter models. The purpose of this paper is to extend the
previous results to two or more parameters, and to examine
The relation between classically chaotic systems and ththe global topological effects on universal functions due to
fluctuation properties of the corresponding quantum systeme multidimensional parameter space. We point out that the
has been a focus of intense investigation in recent ydars universality of parametric correlations which emerges on
We have learned that the quantum counterpart of classicallghort distance scales can be different from one-parameter
chaotic systems have many properties which can be degnodel predictions.
scribed by random matrix theofRMT). As a consequence,
one now typically invokes random matrix ensemble averag- Il. GEOMETRIC PHASE FOR GOE MATRICES
ing to simplify the computation of properties of complex

systems. But while the understanding of properties of RMT We .consider mgltiparameter Hamiltonians which exhibit
is now quite well established, until recently very little was C1@0S in some region of parameter space, such that the fluc-

known about random matrix or chaotic Hamiltonians Whichtuation properties of the quantum Hamiltonian in that regime

depend on an external parameterThe parameter depen- '€ des_cribed by randor_n matrix theory. We will limit the
b P P P hglscussmn to the Gaussian orthogonal ensen@BIBE), or

systems with time-reversal symmetry. As a result, the Hamil-

Born-Oppenheimer approximatidi®]. The types of ques- tonian is a real symmetric matrix, with a nondegenera}te ei.—
tions one is interested in are how the properties of such Sy@envalue spectrum. Consider now the general adiabatic

tems are correlated in that parameter. In the past few yearsY?”at'O” of the gk;_rmlt(;)nlam (R(t)), where the adiabatic
has become apparent that a more general class of randdfifenstates are defined as

matrix results exist for parametric Hamiltonians. In a series _
of papers, Szafer-Simons and Altshul&] computed the HR)nR(D)=ERO)RD). @)

density-density and level velocity correlators in a parametriq=or 3 wave-function adiabatically transported along some

behavior of very different chaotic and disordered systemsgeometric phasey [9]:

By introducing a specific scaling of the parametercorre-
lation functions were found to fall upon universal curves, \P(t):e—a/fz)fgdt',En(R(t'»eiyn(t)wn(R(t)). @)
independent of the underlying properties of the studied sys-
tems. Since then, there have been extensive studies on un¢e are only concerned here with the geometric component
versality in other systems, and the class of observables haf the acquired phase,, which contains information about
been extended to include wave functions and distributions ofhe topology of the parameter space and about the presence
matrix elementd4]. Several further studies were based onof diabolical points What we mean by diabolical points are
Ref. [4], including a check that the predictions for wave the following. If one takes the matrix elements of a general
functions hold in chaotic systeni$], a general theory for Nx N matrix as parametefsvhich can be complexthen the
scaling[6], and the introduction and verification of a wide points in this parameter space which correspond to degenera-
class of universal correlation functions and distributibns  cies in the eigenvalue spectrum are the so-called diabolical
In the study of many-body systems, both bosof¥i¢ and  points. For a specific parametrizatibi{R), the pathR need
fermionic [8] systems have been shown to have identicahot pass through the diabolical pointsigfto be influenced
correlation functions when the systems are sufficiently chapy their presence. For the parallel transport of the adiabatic
otic. However, all this work has been relegated to onestatesy,, around a closed circui€ in parameter space, we
have

motion of slow variables in a complex system treated in th
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For real symmetric matrices, the acquired geometric phase 1 1

for a closed loop i®'"(©)=1 if the path does not enclose a  F(X,y)=5[cogx)+cogy)]=1— Z(X2+y2)+ e
degeneracy(diabolical poin}, and e'”(©)=—1 if the path

does enclose a degenerddy)]. The path can be in any re- F(0)=1. (7)
gion of parameter space, but if the chaotic properties of the

Hamiltonian go away for a particular range of parameter, onéll higher order moments can be computed in termg ¢¥].
might encounter degeneracies and further complications sudie can also restrict E44) to be a one-parameter model, for
as non-Abelian gauge potentials can develop. We will noexample, keepingy fixed. In this case, the statistics of
consider this here, and hence restrict our discussion to path$(x)=H(x,y=cons} reduce to the familiar properties of
in the classically chaotic regions of the model we study, andne-parameter systerfié—6]|, namely,

equivalently, Hamiltonians chosen from the GOE ensemble. 5

- a
Hij(OHK(x") = 7F(X—X')(5ik5j|+5i|5jk). 8
1. TWO-PARAMETER MODELS

We will study a two-parameter Hamiltonian which is a Where the correlation function is now,
many-body bosonic model for collective nuclear excitations 1 X 1
[7]. We would like to compute various parameter-dependent F(x)= —[1+cos{x)]=co§(— =1--X%+---. (9
correlation functions in the model and understand how close 2 2 4
they are to being purely statistical in shape. For example, thi?\/e note that the small distance behavior of the functiens
might include how rapidly a many-body wave function deco-is quadratic is both Eq<7) and (9)
rrelates as one modifies the Hamiltonian. To do this we re- ' '
quire a parameter-dependent, statistical Hamiltonian from
which we can compute the statistical predictions for various
correlation functions. We will verify the topological effects we present here in a
realistic model. We use the interacting boson madigM)
[13], which is built from scalar ') and quadrupole
] ) ) d',u=+2,+1,0) bosons, which carry angular momentum
Random matrix theory describes the properties of 420 and 2, respectively. This model describes the low-
Hamiltonian H;; whose matrix elements are Gaussian ran-gnergy collective excitations of nuclei with even numbers of
dom numberg11]. The first step is to extend these ideas t0p4t0ns and neutrons, the bosons representing paired nucle-
incorporate parameter dependence, resulting in a Hamilyns |n the consister® form [14], the Hamiltonian has only

tonianH;;(R) which is a random matrix at every parameter o relevant parameters and y, and in spherical tensor
valueR. We first consider a two-parameter realization of the,gtation. is given by

GOE ensemble. A convenient Hamiltonian[i<]

B. A chaotic Hamiltonian

A. Random matrix Hamiltonians

R -9~ - A

H(R)=H(X,y) Higm( 7, x) = nNg+ Ny Q¥-Q¥+csL-L, (10

1 g

= E[HlCOSH H,sinx+Hscos/+Hysiny], (4)  whered,=(—1)*d_, and
2
, e Ag=d"-d= > (—)#dld_
whereH , are independenty X N, GOE matrices: d o pue
H_EIO, " a1 3
L,=v10d"xd]'= V10X (2v2v'|1p)d]d, ,
& (11)
HaHpg= 75 Sup(Sikdji + 8t Sjk)- ©)

Qr=dls+s'd,+x[d"xd]?,
The parametea is related to the average level spacihgyia - -
a=A\N/m. H(x,y) is clearly GOE at every pointx(y), =dls+s'd,+x> (2v2v'|2u)dld,,
since the linear combination of independent GOE matrices v
results in another GOE matrikl1]. Consequently,

it has Hereny is the d-boson number operatof:w is the angular
only two relevant moments:

momentum vectorNy, is the boson number defined as half
the number of valence nucleor@,jg is the quadrupole op-
erator, and the bracketed symbq|-(-)) is a Clebsch-
) Gordan coefficient. Because the Hamiltonian is a scalar, an-
—— a , , ular momentum is a good quantum number, so that the
Hij 06V HIa Xy ) = 5 FOXLY =y ) (i + 8 djw). garametelcg adds only agn ove?all constant gy, and is
(6) unimportant. The typical physical range of the parameters is
—\J7/2<x<0 and 0< »<1. The chaotic parameter range of
with this model has been mapped out in defab], and we con-

Hij(x,y)=0,
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sider the quantum properties for this classically chaotic reEquation(16) demonstrates that on short distance scales, the
gime. The Hamiltonian is diagonalized in the vibrational  evolution of the adiabatic energies of the Hamiltonian re-
U(5)] basis, withN,=25. The universality of one-parameter semble a diffusion process, characterized by diféusion
random matrix theory predictions for wave functions andmatrix D;;(R). From the above definitionD;;(R) can be
distributions has been established for this model and is exelated to the autocorrelation of the Hamiltonian or the local
tensively discussed in Rdf7]. curvature properties of the energy surfaég®):

C. Topological considerations 2N #°F(R",R)

| | Dij(R)=VEs(R) ViEn(R)= — — =
The topological properties of the parameter space can be [ B
readily taken into account using a symplectic 2-farip and 17

a metric tensog;; . The general Riemannian structure of the . . lity i lation f , h
manifold of quantum states have been defined in Re]. To obtain universality in correlation functions that depend on

In the adiabatic basis,(R)) of H(R), these are determined € parameters, we must rescale the paramgteirs analogy
by the real and imaginary parts of the quantum geometrid® the 1-dimensional situation, we define:

tensor[9,16]: ~
R=DY2.R. (18

i
Ty =(Vithl (L= [gn) (D) Vig) =0+ 5015 (120 Here D' is the square rootof the diffusion matrix D
(D=[D¥?]'DY?), a model-dependent quantity. Because
The antisymmetric tensar;; is related to the element of area (SE,)? is positive definite, it follows that the diffusion ma-
of parametric loops we study below, and the megiic the  trix D;;(R) must be a positive definite matrix. As a conse-

measure of distance: quence, its square rodd'?, is always well defined. Specifi-
cally, it is an upper triangular matrix, which can be
do=0;;dRAdR,, ds’=g;;dRdR;. (13)  constructed using the Cholesky factorizatid]. In terms

It is hence possible to incorporate the topological propertie®f R: the energy level diffusion is now parameter free:

of the parameter space into a very general formalism. How-

. . . 2_p2
ever, as the random matrix model we consider here, in the (6En) =R (19
universal regime, is rather simple, we forgo a covariant con- ) ) )
struction in this article. In analogy to the 1-dimensional scaling, we now expect all
model dependence to be removed when we compute corre-

dimension of the Hilbert spadd, the average level density

The gniversa! functions obtained for var_ious pa.rametricA, and the short distance behavior of the autocorrelation
correlation functions, such as the decorrelation of eigenfuncg,  tion F(x)=1—cx?+--- characterized by the coeffi-

tions ((R)|(0)), are found by rescaling the parameterscien(s) c. The rescaling byD2 removes all this depen-

R to remove all model dependence. The scaling of the Pagence, resulting in parameter fremiversalresults. We only

rameters is the cruc!al element in obtaining ur?'Vers"’“'ty_mremark here in passing that there is a more general class of
one-parameter theone;s. We need to .extend th's to Multipgs,cesses for which the diffusion is not smopf, charac-
rameter models. Consider the short distance diffusion of th erized by the short distance behavior oF(x):

adiabatic energies of a Hamiltonidh(R). From perturba- F(X)=1—Cx“+---, with 0<a<2. In this case, one can

tion theory, foIIow.mg the arguments of Dysd,17.§ we proceed as discussed above, but one must define the deriva-
have to first order: tives of F in Eqg. (17) as fractional derivativegl9,6].
E (R)=E (R)+H(R)—Hpn(R)+ - -. (14) In general, there is dependence of the diffusion matrix on
its position in parameter space, clearly seen in @q). A
It is convenient to rescale the energies by the mean levedeneral parametric Hamiltoniar(R) will have an autocor-
spacinge,— E, /A, so that the statistical decorrelation of the relationF(R’,R) which is not translationally invariant, as is

eigenvalues is given by: the case for the IBM Hamiltonian, so thBt is parameter
dependent. By construction, our random matrix Hamiltonian
(8E,)?=[E,(R")—E,(R)]? is translationally invariant, so th&(R’,R)=F(R’'—R), and
1 as a resulD;; is independent oR. We find for the random
; matrix model[Eq. (4)]:
= o (HonR)—Ho (R (15 [Eq. (4]
N

2a
=F[1—F(R’,R)]

In one-parameter model§;;— D,,=C(0), the scaling in-

~(R'—R)(R'—-R) 2N J°F troduced in Refs[3]. Note that the diffusion matrix for our
A AT . random matrix model is isotropi¢in parameter spage
RI=R which is certainly not the case for the IBM Hamiltonian,

=(R’'—R)-D(R)-(R'—R). (16) which contains bilinear parameter dependence of the form

7 IR/ IR
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FIG. 2. One-parameter universality of the distribution of matrix

elementsP(u;R), Whereu=(¢n(§)|zpn(0)>. The solid histogram
is random matrix prediction while the dotted histogram is the ob-
served result from the interacting boson mofdg|

_ FIG. 1. Comparison of computed scaled area,
A= DD XoYg, of the parametric loo|t, for the Hamiltonian

of Eqg. (4), to the theoretical result from Eq&23) and (24). The
dashed line is the expected result.

The regime of universality is roughly defined by the scale

nx. In that case we compute the componentDgf( 7, x) [4]
for the energy surfacelS,( 7, x) and rescale accordingly.
Consider now the path taken frof— R. A particular

wa_v:z—funﬁltmn fOIIO\l’Y'n%d'ﬁT’ren;P?hst betweer; .thesr? tWOAnangoust, the regime of universal behavior for topologi-
points will generally develop distinct geometric phases_,, phase effects is

Y FNR). Equivalently, we can consider closed circuits which

IR|=1. (25)

begin and end at a given point, denotBe-0. Using the A=1. (26)
two-parameter model in E@4), whereR=(x,y), we define
such a patiC as: We will see in the next section that the area of the loop does

not have to be large before one finds significant effects, and
(0,0—(X0,00—(Xp,Y0)—(0,Yo)—(0,0.  (21)  saturation of these effects already occur within the universal
) . ) ) regime.

Upon traverS|_ng this path, the wave-function will develop a g previous work in Refd7,4] examined the universal
phase according to statistical decorrelations of wave functions, as well as related
iy (C _ observables, in a one-parameter formalism. There we intro-
[n)— €7 ) = £ [n). (22 duced the distribution of wave function overlaps between the
From Eg.(20), the scaling along the circut in the x and eigenstales of two Hamiltonians separated by a parametric

y directions is distanceR:

~ [N _ /N _ [N By iy B
Ri — ?5” RJ , X= ?X, y: ?y (23) P(U,R), u <'/’n(R)| ‘//n(0)> (27)

In Fig. 2, a typical universal result is showThe vertical

I\h:eAXr:Ie;/?(ntY q#kﬁgt&yeasliretgfeareaarign k;)g m;h dee ulrﬁ\cl)s;_axis in all plots ofP(u;ﬁ) is rescaled to place the maximum
Y=>oT0. near unity] The solid histogram is the result from random

sgl (for comparisons to parametrl.c areas in other |_|"m"|t0'matrix theory, and the dashed histogram is the result from
niang by defining the scaled area:

the IBM, in particularJ™=10" states[7]. In a basis of 25
AN ATAT bosons,N,=25, this corresponds to a dimension of 211
A=AXAy=+D,,DXoYo. 24 LI . . .
y XxZyy0 70 @49 states, of which only the middle third of the eigenstates are
As a check of our results, we plot in Fig. 1 the ratio of the used. WhenR=0, we are measuring the distribution of
computed value of to the predicted result in Eq&3),(24),  wave-function overlaps of a single Hamiltonian. The result is
using the Hamiltonian of Eq(4), for varying sizes of the a delta function, since the wave functions are orthonormal;

parametric loop. We take 100 points around the I@m@and  all overlaps are unityu={,(0)| ,(0))=1] for R=0. As

computeD;;(x,y) by averaging over the mid_dle th_ird of the R increases, we measure the distribution of overlaps of wave
energy surface€,(x,y). The agreement is quite good.

(There is a slight systematic shift of the results which seem&nctions ofH(R;) andH(Rz), whereR=R;—R;, which
to be due to the method used to unfold the energy spedtrumspreads from the delta function @&=0 in a model-
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FIG. 3. Modification of one-parameter universality for a two- FIG. 4. Same as Fig. 3, but for a loop of smaller area. In this
paramet.ei sguare of sndQ:Y0=-0.32, withN=200. The distribu- case, Xo=Y,=0.03, and N=200. The figures correspond to
tion P(u;R) is shown at the pointsX,Y)=(a) (0,0), (b) (0.16,0), (X,Y)=(in units of X,) (a (0,0), (b) (1.0,1.0),(c) (0.8,1.0),(d)

() (0.32,0.32)(d) (0,0.32),(¢) (0,0.16),(f) (0,0) (after traversal (g ) (after traversal of loop The smaller loop area contains fewer
of loop). Both (f) and (&) represent the same point, showing that giaholical points and hence has fewer states which splidinThe

universality is path dependent. The dotted histogram corresponds {gshed histogram corresponds to the results from the IBM, which
results from the IBM, on a parametric loop of similar scaled area. 5 plotted slightly offset for better contrast.

sponding to the existence of the Berry’'s phase of

independent way. Eventually, whé®>1, the two Hamilto-  €Xfiv(C)]=*1. As the circuit is closed, the distribution
nians have eigenfunctions which are completely uncorredoes not go back to its original form, but is now described by
lated, so that one recovers the statistical distribution for théwo delta functions located at=+1 of equal magnitudes
overlap of GOE eigenvectors, the Porter-Thomas distributiofwithin numerical fluctuations The fractionf is at its statis-
[20,11. The Porter-Thomas limit is nonuniversal in the tical (saturation limit of 50% for this loop, as seen in Fig.
sense that the distribution depends explicitly on the dimen3(f). Hence,the short distance universality that occurs in
sionN of the space. However, if we now allow paths in two Multiparameter systems is not simply a function of the metric
or more dimensions, the shape of this distribution dependdistance between the two poirisand R. Given only the

on how one reaches the positidR. distanceR, the distributionP(u;R) is not well defined, since
Consider the same distributions when we traverse the pattne might be close to either Fig(a or 3(f), which represent
of Eg. (21) of areaA. When we transportN eigenstates the same point. However, both are universal results when
around the loop, a certain number of them will develop aone follows a path of the same scaled area. In this case, the
phasey,(C) =, which we denoteN{w). The remaining universal functionP(u) must also identify the area sub-
MO) states do not acquire a phase, wheretended by the path. Figure 4 shows a similar collection of
N=AMO)+Mm). The fraction of states which acquire a distributions in the case of a smaller parametric square. As
Berry’s phase is defined as can be seen here, only a small fraction of states subtend a
diabolical point. It is clear that quantities which are sensitive
to the phase of the wave functions will generally be modified

¢ N(r) 08 in multiparameter theories.
= MO+ M) @8
IV. UNIVERSAL DENSITY OF DIABOLICAL POINTS

As mentioned above, because a nonzero valueVigt) in- The effect we have described in the previous section is
dicates that paths followed by certain eigenstates enclose dgue to diabolical points which are enclosed by the parametric
diabolical point, this measure is clearly related to the numbecircuit C. We now consider the density of these diabolical

of diabolical points enclosed by the path of afedn Fig. 3,  points. It has been shown that a necessary condition for the

the wave-function overlap distribution functioR(u;R), is ~ occurrence of a Berry's phase gf(C)=m for a system
shown at various points along the square cir€lifThe solid ~ transported around a closed lop is the existence of a
histogram corresponds to the random matrix predictions, angéliabolical point within the loof10,12. Hence the fraction
the dots to the results from the IBM. Initially, the distribution f of states in Fig. &) and 4d) that havey(C) = should be
is a delta function centered &= (x,y) = (0,0). As the sepa- 2 Measure of the number of diabolical points enclosed in the

S~ RO areaA, or equivalently, the density of diabolical points. We
ration R increases, the decorrelation is similar to the resultsygte that we assume that as the area increases, the occurrence
of Fig. 2. But as the circuit returns to the origiﬁ,=0, the of a new diabolical point is responsible for the phase change
distribution bifurcates into two distinct distributions, corre- of only one eigenfunction. For loops of small area, which is
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When the area is largé,is no longer a good measure of the

50p----7"7"=- it ol _" = number of diabolical points, so the dependenca(@) and
40 * l _%_:_"% E f(C) with N is no longer meaningful. In Fig. &ottom), we

30k 4 plot the small area behavior of the fractibnThe statistical
20k %%_ 3 errors are computed by computing the fractibrand the
S 10k 3 scaled ared# for a number of realizations of the parametric
~ Hamiltonians. The results for the chaotic systdBM ), the
5 %_o 05 1.0 open circles, are not averaged over, but come from single
3 X parametric loops. The general result is that the number of
o 30 — diabolical points grows quadratically with the dimension of
25F -7 the matrix.(Saturation effects occur for larger argastom
_ROF Q__%, = 1 the results of Fig. 5, we conclude that the fractional density
1(5) 3 *,—ie" E of diabolical pointsp, in terms of scaled area, is a universal
5E )} %)}% 3 constant for chaotic systems, given by
o0& 2
0.0 0.1 0.2 0.3
X
_f(C)
FIG. 5. Universality of the density of diabolical poinfsin P= '/_”\ =0.94+0.10. 3D

chaotic systemgTop) fraction of wave functions enclosing a dia-

bolical point as a function of the scaled area of the |@pcalcu-

lated at(i) fixed dimensiorN=200, with the size of the loop vary- The quantity similar ton(C) was examined recently in a
ing over the range €Xy=Y,=<0.25(crosse (ii) fixed loop area  very interesting study of avoided level crossindg], using

with Xo=Y;=0.18, and the dimension varied froh=25-300 the same two-parameter GOE model. In that study, a similar
(boxes; (iii) fixed dimension in the chaotic region of the IBM pa- scaling inN was found for the number of diabolical points,
rameter space, for several loop sizescles. (Bottom) linear be-  glthough their results were not universal, and do not com-
havior of the small area behavior bf From this we find the density pletely agree with the results of this study. The overall scal-
of diabolical points increases quadratically with the dimension Ofing agreement is encouraging, and we believe the discrep-
the matrix. ancy is due to the different methods used to count diabolical

T . . o oints.
the situation in the universal regime, this is a reasonablg

assumption. In Fig. Ftop) we plot the fraction of statef

which enclose a diabolical point as a function of the scaled V. CONCLUSION
area. There are three sets of results in the figure. The crosses ] )
are the result of varying the size of the looKy="Y, We have developed a formalism to compute universal

e (0,0.25, with N=200, so that the scaled area varies fromParametric correlations in multiparameter systems, explicitly
0 to 1.27. The boxes correspond to varying the dimension ofiemonstrating universality in chaotic systems. The scaling in
the matrices from N=50—300 for fixed area with @chieved through the square root of the diffusion matrix

X,=Y,=0.18. Finally, the open circles correspond to para-Dii . Wg have a[so found that _uniyersal re_sults for two-point
metric loops in the interacting boson model, at fixed dimen<orrelation functions and distributions, which are thought to

sion. As is clearly seen the behavior is statistically equivalenP® Only @ function of the separation of the points in param-
for all the results, demonstrating universality of the results €t€r space, can be path dependent in more than one param-
The general features of these results are the following. WE&!€' dimension. Indeed, one can obtain distinct results for the

see that the fractioh increases linearly with scaled area, andg:]iversal corhrelat;ons r?y re(ja}ching the Salme_ final point by
that statistical saturation of 50% occurs far-1. [In the ifferent paths. So short distance correlations are not a

Hamiltonian (4). the relation to th E— NA/ 72 simple function of the metric distance between the points in
amiltonian(4), the relation to the area = 7 (see parameter space, but are also a function of the shape of the

Fig. 1) while in the IBM, A<NA.| We expect saturation path taken between the points. This is true for all quantities
when there are many diabolical points, so that statisticallyyhich are sensitive to the phase of the wave functions.
the probability of having a phase change for an arbitraryyhether one can actually measure interference effects in a
wave-function is 1/2. If we define the number of diabolical anner analogous to measures of Berry’s phase is an inter-
points enclosed by the circu@ asn(C)=Nf(C), we con-  esting question to explore. Quantities which are not sensitive
clude that in the nonsaturation regime, to the phase will not suffer from this ambiguity. Finally, we
have verified that the density of diabolical points grows qua-
dratically with the dimension of the matrix, and used that to
determine a universal measure of the density of diabolical
points in chaotic systems.

f(C)=cNA, n(C)=cN?A, (29
wherec is determined from the slope of Fig.(bottom). In
the saturation regime,
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